A Novel Three-Component Tetrahydrobenzofuran Synthesis

Ahmad Shaabani^{1,*}, Mohammad B. Teimouri¹, and Hamid R. Bijanzadeh²

- ¹ Department of Chemistry, Shahid Beheshti University, Zip Code 1983963113, Tehran, Iran
- ² Department of Chemistry, Tarbiat Modarres University, P. O. Box 14155-4838, Tehran, Iran

Received March 28, 2003; accepted (revised) April 15, 2003 Published online February 2, 2004 © Springer-Verlag 2003

Summary. Environment-friendly three component condensation reactions of cyclic 1,3-diketones, 4nitrobenzaldehyde, and alkyl or aryl isocyanides to afford the corresponding tetrahydrobenzofuran derivatives in water in high yields within one hour are reported.

Keywords. Condensation reaction; Cyclic 1,3-diketone; Isocyanides; 4-Nitrobenzaldehyde; Tetrahydrobenzofuran.

Introduction

Tetrahydrobenzofurans fused with a six-membered ring at C_2-C_3 are an important class of heteroaromatic compounds that can be found as components of naturally occurring compounds [1]. They are also extensively utilized as synthetic intermediates in the preparation of a variety of natural products, such as evodone, pongamol, lanceolatin B, isoeupatin, tubipofurans, and paniculide A. Most of these have desirable medicinal properties and biological activities [1–6].

Several methods have been reported for the synthesis of tetrahydrobenzofurans [3, 4, 7-9], however, most of them rely on multi-step reactions and yields are low [3, 8, 9].

In connection with our previous work on the reaction of isocyanides with electron-deficient heterodienes [10-15] and synthesis of highly functionalized furans [10, 13, 15], we wish to report a facile and rapid protocol for the synthesis of tetrahydrobenzofurans by means of a three component condensation reaction of cyclic 1,3-diketones 1, 4-nitrobenzaldehyde 2, and alkyl or aryl isocyanides 3 in water at 75°C.

^{*} Corresponding author. E-mail: a-shaabani@cc.sbu.ac.ir

Results and Discussion

The one-pot three component condensation reactions of cyclic 1,3-diketones 1, 4nitrobenzaldehyde 2, and alkyl or aryl isocyanides 3 proceeded spontaneously at 75°C in water and were complete within one hour (Scheme 1). ¹H and ¹³C NMR spectra of the crude products clearly indicated the formation of tetrahydrobenzofurans 4. The structures of compounds 4a–4g were deduced from their elemental analyses, IR, ¹H NMR, and ¹³C NMR spectra. The mass spectra of these compounds displayed molecular ion peaks at appropriate m/z values.

The ¹H NMR spectrum of **4a** exhibited four single sharp lines readily recognized as arising from two methyl ($\delta = 1.17$ ppm), *tert*-butyl ($\delta = 1.23$ ppm), and two methylene ($\delta = 2.39$ and 2.75 ppm) protons. A fairly broad singlet ($\delta = 3.81$ ppm) is observed for the NH group, and the 4-nitrophenyl moiety gave rise to characteristic signals in the aromatic region of the spectrum. The ¹H decoupled ¹³C NMR spectrum of **4a** showed 15 distinct resonances in agreement with the suggested structure. Partial assignment of these resonances is given in the Experimental.

The ¹H and ¹³C NMR spectra of 4b-4g are similar to those of 4a except for the R and R' groups, which exhibit characteristic signals with appropriate chemical shifts.

The synthesis of these tetrahydrobenzofurans can be rationalized by initial formation of a conjugated electron-deficient heterodiene by a *Knoevenagel* condensation [16] of the cyclic 1,3-diketones 1 and the aldehyde 2 followed by a [1+4] cycloaddition reaction [10-15, 17-20] or a *Michael*-type [21, 22] addition reaction with isocyanide 3 to afford an iminolactone 5, which then isomerizes to yield the tetrahydrobenzofurans **4a–4g** (Scheme 2).

In conclusion, we have shown that the three-component condensation reactions of cyclic 1,3-diketones, 4-nitrobenzaldehyde, and alkyl or aryl isocyanides efficiently occurs in water without a catalyst at 75° C within one hour providing a

Scheme 1

Scheme 2

convenient synthesis of substituted tetrahydrobenzofurans. The one-pot nature and the use of water as an eco-compatible reaction solvent makes it an interesting alternative reaction to two general multi-step approaches, namely (a) cyclic 1,3diketone with alenic sulfonium salt followed by ene reaction with enophiles [7] and (b) diazocyclohexane-1,3-diones with vinyl acetate in the presence of rhodium catalyst followed by acid catalyzed dehydration [4].

Experimental

Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. Elemental analyses were performed using a Heraeus CHN-O-Rapid analyzer. These results were in full agreement with the calculated values. Mass spectra were recorded on a FINNIGAN-MAT 8430 mass spectrometer operating at 70 eV. IR spectra were recorded on a Shimadzu IR-470 spectrometer. ¹H and ¹³C NMR spectra were recorded on a BRUKER DRX-500 AVANCE spectrometer at 500.13 and 125.77 MHz. NMR spectra were obtained of solutions in CDCl₃ using *TMS* as internal standard. The *tert*-butyl,

cyclohexyl, and 2,6-dimethylphenyl isocyanides used in this work were purchased from Fluka (Buchs, Switzerland) chemical company and the benzyl isocyanide was obtained from Aldrich chemical company.

Typical Procedure for the Preparation of 4a

To a magnetically stirred mixture of 0.155 g of 5,5-dimethyl-1,3-cyclohexanedione (1.1 mmol) and 0.151 g of 4-nitrobenzaldehyde (1.0 mmol) in 20 cm^3 of H₂O 0.084 g of *tert*-butyl isocyanide (1.0 mmol) were added *via* a syringe and heated for 1 h at 75°C. After cooling to room temperature, the resulting red precipitate was filtered off and washed with 50 cm³ of H₂O. The solid was dried and crystallized from CH₂Cl₂:*Et*OH (1:2) to yield 0.253 g of **4a** as red crystals (71%).

$\label{eq:2-(tert-Butylamino)-6,6-dimethyl-3-(4-nitrophenyl)-6,7-dihydro-1-benzofuran-4(5H)-one (4a, C_{20}H_{24}N_2O_4)$

Mp 170–172°C; IR (KBr): $\bar{\nu}_{max} = 3390$ (N–H), 1664 (C=O), 1320 and 1505 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, Me₄Si): $\delta = 1.17$ (s, 2CMe₂), 1.23 (s, CMe₃), 2.39 (s, C=C–CH₂), 2.75 (s, O=C–CH₂), 3.81 (br s, NH), 7.62 and 8.19 (2d, J = 8.7 Hz, C₆H₄NO₂) ppm; ¹³C NMR (CDCl₃, Me₄Si): $\delta = 28.55$ (2CMe₂), 30.32 (CMe₃), 34.91 (C=C–CH₂), 37.49 (O=C–CH₂), 52.84 (CMe₂), 54.07 (CMe₃), 103.04, 117.98, 123.40, 129.75, 139.72, 145.83, 153.42, and 160.83 (2C=C and C₆H₄NO₂), 193.47 (C=O) ppm; MS: m/z(%) = 356 (M⁺, 42), 300 (74), 244 (31), 216 (40), 57 (100), 41 (76).

$\label{eq:cyclohexylamino} 2-(Cyclohexylamino)-6,6-dimethyl-3-(4-nitrophenyl)-6,7-dihydro-1-benzofuran-4(5H)-one (4b, C_{22}H_{26}N_2O_4)$

Red crystals (0.298 g, 78%); mp 161–163°C; IR (KBr): $\bar{\nu}_{max} = 3395$ (N–H), 1666 (C=O), 1329 and 1497 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, Me₄Si): $\delta = 1.17$ (s, 2CMe₂), 1.19–1.99 (m, 5CH₂), 2.38 (s, C=C–CH₂), 2.73 (s, O=C–CH₂), 3.39 (m, N–CH), 4.07 (br s, NH), 7.59 and 8.17 (2d, J = 8.5 Hz, C₆H₄NO₂) ppm; ¹³C NMR (CDCl₃, Me₄Si): $\delta = 24.86$, 25.49 and 34.17 (5CH₂), 28.56 (2CMe₂), 34.94 (C=C–CH₂), 37.36 (O=C–CH₂), 52.89 (CMe₂), 53.58 (N–CH), 95.81, 118.46, 123.58, 129.04, 140.01, 145.18, 154.00, and 159.46 (2C=C and C₆H₄NO₂), 193.61 (C=O) ppm; MS: m/z(%) = 382 (M⁺, 100), 300 (23), 244 (15), 216 (21), 83 (10), 55 (49), 41 (37).

2-(Benzylamino)-6,6-dimethyl-3-(4-nitrophenyl)-6,7-dihydro-1-benzofuran-4-(5H)-one (4c, C₂₃H₂₂N₂O₄)

Red crystals (0.285 g, 73%); mp 108–110°C; IR (KBr): $\bar{\nu}_{max} = 3410$ (N–H), 1668 (C=O), 1316 and 1492 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, Me₄Si): $\delta = 1.16$ (s, 2CMe₂), 2.37 (s, C=C–CH₂), 2.72 (s, O=C–CH₂), 4.41 (s, CH₂Ph), 4.60 (br s, NH), 7.27–7.35 (m, C₆H₅), 7.52 and 8.11 (2d, J = 8.4 Hz, C₆H₄NO₂) ppm; ¹³C NMR (CDCl₃, Me₄Si): $\delta = 28.53$ (CMe₂), 34.94 (C=C–CH₂), 37.29 (O=C–CH₂), 48.80 (CH₂Ph), 52.85 (CMe₂), 95.85, 118.61, 123.52, 127.62, 127.80, 128.81, 129.12, 138.38, 139.58, 145.29, 153.96, and 159.50 (2C=C, C₆H₄NO₂, and C₆H₅), 193.68 (C=O) ppm; MS: m/z(%) = 390 (M⁺, 63), 299 (5), 91 (100).

2-(2,6-Dimethylphenylamino)-6,6-dimethyl-3-(4-nitrophenyl)-6,7-dihydro-1-benzofuran-4(5H)-one (**4d**, C₂₄H₂₄N₂O₄)

Orange crystals (0.288 g, 71%); mp 224–226°C; IR (KBr): $\bar{\nu}_{max} = 3270$ (N–H), 1653 (C=O), 1498 and 1328 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, Me₄Si): $\delta = 1.14$ (s, CMe₂), 2.16 (s, C₆H₃Me₂), 2.38 (s, C=C-CH₂), 2.66 (s, O=C-CH₂), 5.75 (br s, NH), 6.96–7.00 (m, C₆H₃), 7.63 and 8.07 (2d, J = 7.8 Hz,

 $C_6H_4NO_2$) ppm; ¹³C NMR (CDCl₃, Me₄Si): $\delta = 18.42$ ($C_6H_3Me_2$), 28.46 (CMe₂), 34.92 (C=C-CH₂), 37.37 (O=C-CH₂), 52.86 (CMe₂), 99.25, 118.50, 123.05, 125.10, 128.84, 129.49, 132.10, 136.77, 138.85, 145.49, 150.60, and 160.31 (2C=C, C₆H₄NO₂, and C₆H₃), 193.57 (C=O) ppm; MS: m/z (%) = 405 (MH⁺, 100), 305 (10), 172 (12), 105 (29), 77 (43), 41 (32).

2-(Cyclohexylamino)-3-(4-nitrophenyl)-6,7-dihydro-1-benzofuran-4(5H)-one (4e, C₂₀H₂₂N₂O₄)

Red crystals (0.298 g, 84%); mp 153–155°C; IR (KBr): $\bar{\nu}_{max} = 3420$ (N–H), 1654 (C=O), 1502 and 1323 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, Me₄Si): $\delta = 1.17-1.98$ (m, 5CH₂), 2.18 (m, O=C-CH₂-CH₂), 2.48 (t, J = 6.3 Hz, C=C-CH₂), 2.85 (t, J = 6.0 Hz, O=C-CH₂), 3.40 (m, N-CH), 4.10 (br s, NH), 7.56 and 8.15 (2d, J = 8.2 Hz, C₆H₄NO₂) ppm; ¹³C NMR (CDCl₃, Me₄Si): $\delta = 22.34$ (C=C-CH₂-CH₂), 23.36 (C=C-CH₂), 24.86, 25.50 and 34.13 (5CH₂), 38.49 (O=C-CH₂), 53.50 (N-CH), 95.76, 119.70, 123.51, 129.15, 140.08, 145.18, 153.73, and 160.43 (2C=C and C₆H₄NO₂), 194.13 (C=O) ppm; MS: m/z (%) = 354 (M⁺, 75), 272 (81), 255 (18), 83 (32), 55 (100), 41 (71).

2-(Benzylamino)-3-(4-nitrophenyl)-6,7-dihydro-1-benzofuran-4(5H)-one (**4f**, C₂₁H₁₈N₂O₄)

Red crystals (0.294 g, 81%); mp 119–121°C; IR (KBr): $\bar{\nu}_{max} = 3372$ (N–H), 1642 (C=O), 1492 and 1324 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, Me₄Si): $\delta = 2.18$ (m, O=C–CH₂–CH₂), 2.48 (t, J = 6.1 Hz, C=C–CH₂), 2.85 (t, J = 6.0 Hz, O=C–CH₂), 4.42 (s, N–CH₂), 4.52 (br s, NH), 7.27–7.35 (m, C₆H₅), 7.51 and 8.13 (2d, J = 8.3 Hz, C₆H₄NO₂) ppm; ¹³C NMR (CDCl₃, Me₄Si): $\delta = 22.32$ (C=C–CH₂–CH₂), 2.3.0 (C=C–CH₂), 38.47 (O=C–CH₂), 48.74 (N–CH₂), 95.79, 119.85, 123.53, 127.58, 127.80, 128.83, 129.21, 138.38, 139.60, 145.36, 153.60, and 160.37 (2C=C, C₆H₄NO₂, and C₆H₅), 194.14 (C=O) ppm; MS: m/z (%) = 362 (M⁺, 2), 256 (10), 150 (27), 91 (100).

2-(2,6-Dimethylphenylamino)-3-(4-nitrophenyl)-6,7-dihydro-1-benzofuran-4(5H)-one (4g, $C_{22}H_{20}N_2O_4$)

Orange crystals (0.275 g, 73%); mp 172–173°C; IR (KBr): $\bar{\nu}_{max} = 3225$ (N–H), 1654 (C=O), 1504 and 1329 (NO₂) cm⁻¹; ¹H NMR (CDCl₃, Me₄Si): $\delta = 2.16$ (s, 2CH₃), 2.17 (m, O=C–CH₂–CH₂), 2.50 (t, J = 6.7 Hz, C=C–CH₂), 2.79 (t, J = 6.2 Hz, O=C–CH₂), 5.68 (br s, NH), 6.98–7.01 (m, C₆H₃), 7.60 and 8.09 (2d, J = 8.3 Hz, C₆H₄NO₂) ppm; ¹³C NMR (CDCl₃, Me₄Si): $\delta = 18.43$ (C₆H₃Me₂), 22.25 (C=C–CH₂–CH₂), 23.39 (C=C–CH₂), 38.48 (O=C–CH₂), 98.78, 119.75, 123.06, 125.34, 128.79, 129.55, 132.49, 136.56, 138.87, 145.58, 150.35, and 161.09 (2C=C, C₆H₄NO₂, and C₆H₅), 194.06 (C=O) ppm; MS: m/z (%) = 376 (M⁺, 70), 256 (10), 172 (10), 131 (100), 105 (50), 77 (83), 55 (79).

Acknowledgments

We gratefully acknowledge the financial support from the Research Council of Shahid Beheshti University.

References

- [1] Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HNC (1998) Tetrahedron **54**: 1955
- [2] Jacobi PA, Walker DJ, Odeh IMA (1981) J Org Chem 46: 2065
- [3] Pirrung MC, Zhang J, Morehead AT Jr (1994) Tetrahedron Lett 35: 6229
- [4] Pirrung MC, Lee YR (1994) Tetrahedron Lett 35: 6231

- [5] Ojida A, Tanoue F, Kanematsu K (1994) J Org Chem 59: 5970
- [6] Jacobi PA, Kaczmarek SR, Udodong UE (1984) Tetrahdron Lett 25: 4859
- [7] Ojida A, Abe A, Kanematsu K (1994) Heterocycles 38: 2585
- [8] Ogawa T, Murafuji T, Iwata K, Suzuki H (1989) Chem Lett 325
- [9] Lévai A, Kočevar M, Tóth G, Simon A, Vraničar L, Adam W (2002) Eur J Org Chem 1830
- [10] Shaabani A, Teimouri MB, Bijanzadeh HR (2002) Tetrahedron Lett 43: 9151
- [11] Shaabani A, Teimouri MB, Bijanzadeh HR (2002) J Chem Res(S) 433
- [12] Shaabani A, Yavari I, Teimouri MB, Bazgir A, Bijanzadeh HM (2001) Tetrahedron 57: 1375
- [13] Shaabani A, Ajabi S, Farrokhzad F, Bijanzadeh HM (1999) J Chem Res(S) 582
- [14] Shaabani A, Farrokhzad F (1997) J Chem Res(S) 344
- [15] Yavari I, Shaabani A, Maghsoodlou MT (1997) Monatsh Chem 128: 697
- [16] Tu S, Zhou J, Lu Z, Deng X, Shi D, Wang S (2002) Synth Commun 32: 3063
- [17] Buron C, Kaïm LE, Usla A (1997) Tetrahedron Lett 38: 8027
- [18] Marchand E, Morel G, Sinbandhit S (1999) Eur J Org Chem 1729
- [19] Morel G, Marchand E, Sinbandhit S, Carlier R (2001) Eur J Org Chem 655
- [20] Nair V, Menon RS, Vinod AU, Viji S (2002) Tetrahedron Lett 43: 2293
- [21] Bednar R, Haslinger E, Herzig U, Polansky OE, Wolschann P (1976) Monatsh Chem 107: 1115
- [22] Liedl E, Wolschann P (1982) Monatsh Chem 113: 1067